3.9.58 \(\int \frac {(a+b \cos (c+d x)) (B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [858]

3.9.58.1 Optimal result
3.9.58.2 Mathematica [A] (verified)
3.9.58.3 Rubi [A] (verified)
3.9.58.4 Maple [B] (verified)
3.9.58.5 Fricas [C] (verification not implemented)
3.9.58.6 Sympy [F(-1)]
3.9.58.7 Maxima [F]
3.9.58.8 Giac [F]
3.9.58.9 Mupad [B] (verification not implemented)

3.9.58.1 Optimal result

Integrand size = 40, antiderivative size = 103 \[ \int \frac {(a+b \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {2 (b B+a C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 (a B+3 b C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (b B+a C) \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

output
-2*(B*b+C*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin 
(1/2*d*x+1/2*c),2^(1/2))/d+2/3*(B*a+3*C*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/co 
s(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a*B*sin(d*x+c 
)/d/cos(d*x+c)^(3/2)+2*(B*b+C*a)*sin(d*x+c)/d/cos(d*x+c)^(1/2)
 
3.9.58.2 Mathematica [A] (verified)

Time = 0.83 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.04 \[ \int \frac {(a+b \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \left (-3 (b B+a C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+(a B+3 b C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+3 b B \sin (c+d x)+3 a C \sin (c+d x)+a B \tan (c+d x)\right )}{3 d \sqrt {\cos (c+d x)}} \]

input
Integrate[((a + b*Cos[c + d*x])*(B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c 
 + d*x]^(7/2),x]
 
output
(2*(-3*(b*B + a*C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + (a*B + 3 
*b*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + 3*b*B*Sin[c + d*x] + 
3*a*C*Sin[c + d*x] + a*B*Tan[c + d*x]))/(3*d*Sqrt[Cos[c + d*x]])
 
3.9.58.3 Rubi [A] (verified)

Time = 0.74 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.99, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.350, Rules used = {3042, 3508, 3042, 3447, 3042, 3500, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right ) \left (B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 3508

\(\displaystyle \int \frac {(a+b \cos (c+d x)) (B+C \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right ) \left (B+C \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3447

\(\displaystyle \int \frac {(a C+b B) \cos (c+d x)+a B+b C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a C+b B) \sin \left (c+d x+\frac {\pi }{2}\right )+a B+b C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {2}{3} \int \frac {3 (b B+a C)+(a B+3 b C) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {3 (b B+a C)+(a B+3 b C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {3 (b B+a C)+(a B+3 b C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{3} \left (3 (a C+b B) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx+(a B+3 b C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx\right )+\frac {2 a B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (3 (a C+b B) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+(a B+3 b C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {1}{3} \left ((a B+3 b C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 (a C+b B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )\right )+\frac {2 a B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left ((a B+3 b C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 (a C+b B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )+\frac {2 a B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{3} \left ((a B+3 b C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 (a C+b B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {2 a B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{3} \left (\frac {2 (a B+3 b C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+3 (a C+b B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {2 a B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}\)

input
Int[((a + b*Cos[c + d*x])*(B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x 
]^(7/2),x]
 
output
(2*a*B*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + ((2*(a*B + 3*b*C)*Elliptic 
F[(c + d*x)/2, 2])/d + 3*(b*B + a*C)*((-2*EllipticE[(c + d*x)/2, 2])/d + ( 
2*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])))/3
 

3.9.58.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 3508
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_ 
.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[1/b^2   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - 
a*b*B + a^2*C, 0]
 
3.9.58.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(400\) vs. \(2(147)=294\).

Time = 10.22 (sec) , antiderivative size = 401, normalized size of antiderivative = 3.89

method result size
default \(-\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\frac {2 C b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+2 B a \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{6 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )+\frac {2 \left (B b +a C \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(401\)
parts \(-\frac {2 \left (B b +a C \right ) \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 B a \left (-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) d}+\frac {2 C b \,\operatorname {am}^{-1}\left (\frac {d x}{2}+\frac {c}{2}| \sqrt {2}\right )}{d}\) \(423\)

input
int((a+cos(d*x+c)*b)*(B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2),x,meth 
od=_RETURNVERBOSE)
 
output
-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*C*b*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2 
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2* 
B*a*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2 
)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2* 
cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+2*(B*b+C*a)/sin(1/2*d*x+1/ 
2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2 
*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c 
)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2 
^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.9.58.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 213, normalized size of antiderivative = 2.07 \[ \int \frac {(a+b \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (-i \, B a - 3 i \, C b\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, B a + 3 i \, C b\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (i \, C a + i \, B b\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (-i \, C a - i \, B b\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (B a + 3 \, {\left (C a + B b\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )^{2}} \]

input
integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2), 
x, algorithm="fricas")
 
output
1/3*(sqrt(2)*(-I*B*a - 3*I*C*b)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, 
cos(d*x + c) + I*sin(d*x + c)) + sqrt(2)*(I*B*a + 3*I*C*b)*cos(d*x + c)^2* 
weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(I*C 
*a + I*B*b)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 
0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*(-I*C*a - I*B*b)*cos(d*x + 
c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*si 
n(d*x + c))) + 2*(B*a + 3*(C*a + B*b)*cos(d*x + c))*sqrt(cos(d*x + c))*sin 
(d*x + c))/(d*cos(d*x + c)^2)
 
3.9.58.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(7/2 
),x)
 
output
Timed out
 
3.9.58.7 Maxima [F]

\[ \int \frac {(a+b \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2), 
x, algorithm="maxima")
 
output
integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*(b*cos(d*x + c) + a)/cos(d*x 
 + c)^(7/2), x)
 
3.9.58.8 Giac [F]

\[ \int \frac {(a+b \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate((a+b*cos(d*x+c))*(B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2), 
x, algorithm="giac")
 
output
integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*(b*cos(d*x + c) + a)/cos(d*x 
 + c)^(7/2), x)
 
3.9.58.9 Mupad [B] (verification not implemented)

Time = 3.65 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.46 \[ \int \frac {(a+b \cos (c+d x)) \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2\,C\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,B\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,C\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int(((B*cos(c + d*x) + C*cos(c + d*x)^2)*(a + b*cos(c + d*x)))/cos(c + d*x 
)^(7/2),x)
 
output
(2*C*b*ellipticF(c/2 + (d*x)/2, 2))/d + (2*B*a*sin(c + d*x)*hypergeom([-3/ 
4, 1/2], 1/4, cos(c + d*x)^2))/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1 
/2)) + (2*B*b*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d 
*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*C*a*sin(c + d*x)*hypergeo 
m([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2 
)^(1/2))